您当前所在位置: 首页 > 万博体育APP下载 > 正文
万博体育APP下载

Adaptive Increment Learning for Estimating Optimal Individualized Treatment Regimes

来源:数学与统计学院          点击:
报告人 朱文圣 教授 时间 8月23日9:30
地点 腾讯会议直播 报告时间

讲座名称:Adaptive Increment Learning for Estimating Optimal Individualized Treatment Regimes

讲座时间:2020-08-23 9:30

讲座人:朱文圣 教授

讲座地点:腾讯会议直播(ID:880 164 821)

 

讲座人介绍:

朱文圣,东北师范大学数学与统计学院教授、博士生导师、副院长。2006年12月博士毕业于东北师范大学,2013年12月起任东北师范大学数学与统计学院教授。2008-2010年在耶鲁大学做博士后研究,2015-2017年访问北卡罗来纳大学教堂山分校。中国现场统计研究会计算统计分会副理事长、数据科学与人工智能分会秘书长,中国概率统计学会副秘书长,吉林省现场统计研究会秘书长等。主要从事统计学的方法与应用研究,在Journal of the American Statistical Association、Test、NeuroImage、中国科学等杂志发表学术论文多篇,主持并完成国家自然科学基金项目多项。

 

讲座内容:

Personalized medicine has recently received increasing attention because of the significant heterogeneity of patient responses to the same medication. The estimation of individualized treatment regimes or individualized treatment rules is an important part of personalized medicine. Individualized treatment regimes are designed to recommend treatment decisions to patients based on their individual characteristics and to maximize the overall clinical benefit to the patients. However, most of the existing statistical methods are mainly focus on the estimation of optimal individualized decision rules for the two categories of treatment options and rely heavily on data from randomized controlled trials. There has been a relative lack of research work on the selection of multi-categorical treatment options in real-world settings. In this work, we address this challenge and propose a machine learning approach (AI-learning) to estimate optimal treatment regimes. This new learning approach allows for more accurate assessment of individual treatment response and alleviation of confounding. The increment value functions are proposed to compare matched pairs under a tree structure, and this approach allows for easy handling of the outcomes of various types of measuring treatment responses (including continuous, ordinal, and discrete outcomes). Through a large number of simulation studies, we demonstrate that AI-learning outperforms existing methods. Lastly, the proposed method is illustrated in an analysis of AIDS clinical trial data.

 

主办单位:数学与统计学院

123

南校区地址:陕西省西安市西沣路兴隆段266号

邮编:710126

北校区地址:陕西省西安市太白南路2号

邮编:710071

电话:029-88201000

访问量:

版权所有:万博体育2.0app下载|首頁(欢迎您)     陕ICP备05016463号     建设与运维:信息网络技术中心